
Routing Reconfigurations
Rebecca Lin

MIT
Cambridge, USA
ryelin@mit.edu

Wenzhong Yan
UCLA

Los Angeles, USA
wzyan24@g.ucla.edu

Ankur Mehta
UCLA

Los Angeles, USA
metank@g.ucla.edu

Erik D. Demaine
MIT

Cambridge, USA
edmaine@mit.edu

target designs

string routing

fabrication

units
3D

model

2D
model

cross-section
A

B

C

A

B

Cpush puppet

Figure 1: Each string threaded through a series of units forms a unique target shape when pulled taut.

ABSTRACT
We propose an approach to reconfiguration: routing string through
a collection of geometric units so that pulling on different strings or
groups of strings automatically (re-)arranges the units into distinct
target configurations. We provide several strategies for smooth
reconfiguration, including computing minimum-turn routings and
optimizing the geometry of the units to reduce resistive force.

CCS CONCEPTS
• Applied computing → Computer-aided design.
ACM Reference Format:
Rebecca Lin, Wenzhong Yan, Ankur Mehta, and Erik D. Demaine. 2024.
Routing Reconfigurations. In ACM Symposium on Computational Fabrication
(SCF Adjunct ’24), July 07–10, 2024, Aarhus, Denmark. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3665662.3673255

1 INTRODUCTION
The push puppet consists of disjoint, rigid components intercon-
nected by string. It is rigid when the string is taut and becomes
flexible when slack is introduced. Our work extends the functional-
ity of push puppets to achievemultiple rigid configurations through
different string routes (Fig. 1). This work finds application in fields
such as space engineering, transformable architecture, and robotics.
Specifically, robots can benefit from reconfiguration to adapt to
dynamic environments and harness the advantages of both soft and
rigid materials [Bern et al. 2022; Yan et al. 2024].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SCF Adjunct ’24, July 07–10, 2024, Aarhus, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0695-0/24/07
https://doi.org/10.1145/3665662.3673255

Our Contributions. The main challenge in our approach is design-
ing efficient string routes. Leveraging insights from graph theory,
we give algorithms for computing routes through a collection of
square building blocks (Sec 3.1). These routes either (1) minimize
the total length to reduce material costs and manufacturing time,
or (2) minimize the number of turns to decrease friction during
deployment.1 We also discuss insights into the fabrication of our
designs (Sec. 3.3) and avenues for future research (Sec. 5).

2 RELATEDWORK
Many artists and researchers have studied string-actuated forms:
Edmark [2016] transforms hinged geometries between linear and
spiral arrangements using a single cable; Kilian et al. [2017] create
curved folded surfaces from crease patterns by tightening a network
of string; Martin [2021], Lin and Tachi [2024], and Demaine et al.
[2024a,b] thread strings through tubes to achieve a target structure
when pulling the strings taut. Our work extends these foundations
to reach many distinct target configurations. While other works
like the snake cube [Abel et al. 2013] and FlexTruss [Sun et al.
2021] leverage threading for reconfiguration, they do not explore
integrating multiple threading routes within a single system.

3 METHOD
uT

uR

uB

uL

We employ a single building block: a square unit with
holes that form a complete graph on the midpoints of
the sides (inset). We route string through these units
to assemble these units into target polyominoes when
tightened. We first demonstrate this approach given a single target
configuration (Sec. 3.1), and then extend the technique to accom-
modate multiple target configurations (Sec. 3.2).

1According to the Capstan equation, the friction between the string and the blocks
increases exponentially with the sum of the absolute turn angles in the threading route.

https://doi.org/10.1145/3665662.3673255
https://doi.org/10.1145/3665662.3673255
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665662.3673255&domain=pdf&date_stamp=2024-07-30


SCF Adjunct ’24, July 07–10, 2024, Aarhus, Denmark Lin et al.

0
1

(a) (b) (c) (d) (e) (f)

P G(P) L(P) G(P)L(P) P

Figure 2: A minimum-turn routing of string (f) for a polyomino (a).

3.1 Computing String Paths
We take as input a pair (𝑃, 𝑎∗) that comprises an 𝑛-unit polyomino
𝑃 and an actuation point 𝑎∗, where ∗ ∈ {𝑇, 𝐵, 𝐿, 𝑅} indicates the top,
bottom, left, or right side of 𝑎 (Fig. 2a). We employ the grid graph
𝐺 (𝑃) of 𝑃 (Fig. 2b) to leverage graph-theoretical insights. Our key
observation is that a spanning tree in𝐺 (𝑃) provides a practical tem-
plate for routing strings through 𝑃 . Below, we discuss approaches
to computing spanning trees that either (1) use a single string of
minimal length, or (2) use a collection of string, each optimized to
have as few turns in 𝑃 as possible.

3.1.1 Shortest Path Using a Single String. This task is equivalent to
finding a Hamiltonian cycle in 𝐺 (𝑃), which is efficiently solvable
for polyominoes without holes using the algorithm by Umans and
Lenhart [1997]. The string traverses the cycle, starting at 𝑎∗ and
terminating with a fixed end at the last unit in the cycle. If 𝐺 (𝑃) is
not Hamiltonian, then we apply the following algorithm.

3.1.2 Minimum-Turn Paths Using Multiple String. Here, we do not
limit the number of string. However, the route from the actuation
point to each unit must have as few turns as possible.

Let 𝐿(𝑃) denote the union of complete graphs on the units of 𝑃
(Fig. 2c). If unit 𝑢 is directly left of 𝑣 , then traversing node 𝑢𝑣 , or
equivalently nodes 𝑢𝑅 or 𝑣𝐿 , in 𝐿(𝑃) indicates a direct routing from
unit 𝑢 to 𝑣 in 𝑃 . An edge (𝑤𝑢,𝑢𝑣) in 𝐿(𝑃) incurs a cost of 1 if the
units𝑤 , 𝑢, and 𝑣 form a bend, and 0 if they lie in a straight line.

We apply Dijkstra’s algorithm to find the shortest path from the
actuation point 𝑎∗ to one of {𝑣𝑇 , 𝑣𝐵, 𝑣𝐿, 𝑣𝑅} in 𝐿(𝑃) for each vertex
𝑣 in 𝐺 (𝑃) (Fig. 2d). These paths are then mapped into a shortest
path tree in 𝐺 (𝑃) (Fig. 2e), with each root-to-leaf path 𝑝1, . . . , 𝑝ℓ
traversed by a string (Fig. 2f).

Assuming a user-specified slack of 𝛿 between the units to allow
for a loose state and space for reconfiguration, the minimum slack
required for string 𝑖 is then given by 𝑠𝑖 := 𝛿 · (#𝑝𝑖 − 1), where
#𝑝𝑖 is the number of nodes along path 𝑝𝑖 . We apply the maximum
required slack to each string universally so that all strings are taut
simultaneously, as shown in the example below.2

2Alternatively, instead of precisely measuring the length of each string, a practical
heuristic is to first “deploy” the system into the target configuration with each string
pulled taut, then cut the strings at a length from the actuation point that approximately
allows for the desired amount of slack.

3.2 Achieving Multiple Configurations
Given input pairs (𝑃1, 𝑎∗1), . . . , (𝑃𝑘 , 𝑎∗𝑘 ), we apply our prior algo-
rithms to each pair individually so that pulling on the 𝑗 th string, or
group of string, from actuation point 𝑎∗𝑗 achieves configuration 𝑃 𝑗 .

The slack must now account for the distances between units
across configurations (Fig. 3). We adjust the required slack for
string 𝑖 in 𝑃 𝑗 accordingly:

𝑠′𝑖 := max
𝑚∈[𝑘 ]

(
∥𝑝𝑖 ∥𝑃𝑚 − ∥𝑝𝑖 ∥𝑃 𝑗

)
+ 𝑠𝑖 , (1)

where ∥𝑝𝑖 ∥𝑃𝑚 denotes the shortest routing of the units in path 𝑝𝑖
under configuration 𝑃𝑚 .

(a) (b) (c)

inside
outside

(b)

(c)

Figure 3: Two ways (b) and (c) to reconfigure a straight line
(a) into a staircase. The prior allows for smoother transitions.

3.3 Fabrication
We round all corners of the units to minimize snag-
ging and to reduce friction during rearrangement.
These units are produced by engraving and cutting
the pattern shown in the inset, and then gluing the pieces together.
Our prototypes are made from plywood and nylon string.

4 RESULTS
See our supplementary videos for several results in action. We
provide more examples and further discussions on our website:
https://rebeccayelin.github.io/routing-reconfigurations.

5 FUTUREWORK
Sufficient slack is necessary for reconfiguration, but excessive slack
can cause bunching and tangling. To address this issue, we plan
to consider common spanning trees of target polyominoes to en-
sure consistent unit orderings across arrangements. Likewise, the
disjoint nature of the units often results in disordered states that
impede smooth deployments, so we shall explore hinged dissections
for more structured arrangements. We will also further refine our
designs for better alignment and expand them to include 3D units
and more complex geometries, as our algorithms are adaptable to
these scenarios. Finally, we hope to investigate robot-assisted string
routing to streamline manufacturing.

https://rebeccayelin.github.io/routing-reconfigurations


Routing Reconfigurations SCF Adjunct ’24, July 07–10, 2024, Aarhus, Denmark

REFERENCES
Zachary Abel, Erik D Demaine, Martin L Demaine, Sarah Eisenstat, Jayson Lynch, and

Tao B Schardl. 2013. Finding a Hamiltonian Path in a Cube with Specified Turns is
Hard. Information and Media Technologies 8, 3 (2013), 685–694.

James M Bern, Leonardo Zamora Yañez, Emily Sologuren, and Daniela Rus. 2022.
Contact-Rich Soft-Rigid Robots Inspired by Push Puppets. In 2022 IEEE 5th Interna-
tional Conference on Soft Robotics (RoboSoft). IEEE, 607–613.

Erik D Demaine, Yael Kirkpatrick, and Rebecca Lin. 2024a. Graph Threading. In
15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik.

Erik D Demaine, Yael Kirkpatrick, and Rebecca Lin. 2024b. Graph Threading with
Turn Costs. arXiv preprint arXiv:2405.17953 (2024).

John Edmark. 2016. Roll-Up Spiral. https://www.johnedmark.com/spirals1/2016/4/29/
roll-up-spiral

Martin Kilian, Aron Monszpart, and Niloy J Mitra. 2017. String Actuated Curved
Folded Surfaces. ACM Transactions on Graphics (TOG) 36, 3 (2017), 1–13.

Rebecca Lin and Tomohiro Tachi. 2024. Push Puppet-Inspired Deployable Structure.
https://twitter.com/rebeccayelin/status/1749193197031469102

Alison Martin. 2021. Optimization of Threading Paths. https://twitter.com/
alisonmartin57/status/1461643652946698240

Lingyun Sun, Jiaji Li, Yu Chen, Yue Yang, Zhi Yu, Danli Luo, Jianzhe Gu, Lining Yao,
Ye Tao, and Guanyun Wang. 2021. Flextruss: A Computational Threading Method
for Multi-Material, Multi-Form and Multi-Use Prototyping. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–12.

Christopher Umans and William Lenhart. 1997. Hamiltonian Cycles in Solid Grid
Graphs. In Proceedings 38th Annual Symposium on Foundations of Computer Science.
IEEE, 496–505.

Wenzhong Yan, Talmage Jones, Christopher L Jawetz, Ryan H Lee, Jonathan B Hopkins,
and Ankur Mehta. 2024. Self-Deployable Contracting-Cord Metamaterials with
Tunable Mechanical Properties. (2024).

https://www.johnedmark.com/spirals1/2016/4/29/roll-up-spiral
https://www.johnedmark.com/spirals1/2016/4/29/roll-up-spiral
https://twitter.com/rebeccayelin/status/1749193197031469102
https://twitter.com/alisonmartin57/status/1461643652946698240
https://twitter.com/alisonmartin57/status/1461643652946698240

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Computing String Paths
	3.2 Achieving Multiple Configurations
	3.3 Fabrication

	4 Results
	5 Future Work
	References

